Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biomolecules ; 13(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136582

RESUMO

Despite the widespread use of doxorubicin (DOX) as a chemotherapeutic agent, its severe cumulative cardiotoxicity represents a significant limitation. While the liposomal encapsulation of doxorubicin (Myocet, MYO) reduces cardiotoxicity, it is crucial to understand the molecular background of doxorubicin-induced cardiotoxicity. Here, we examined circular RNA expression in a translational model of pigs treated with either DOX or MYO and its potential impact on the global gene expression pattern in the myocardium. This study furthers our knowledge about the regulatory network of circRNA/miRNA/mRNA and its interaction with chemotherapeutics. Domestic pigs were treated with three cycles of anthracycline drugs (DOX, n = 5; MYO, n = 5) to induce cardiotoxicity. Untreated animals served as controls (control, n = 3). We applied a bulk mRNA-seq approach and the CIRIquant algorithm to identify circRNAs. The most differentially regulated circRNAs were validated under cell culture conditions, following forecasting of the circRNA-miRNA-mRNA network. We identified eight novel significantly regulated circRNAs from exonic and mitochondrial regions in the porcine myocardium. The forecasted circRNA-miRNA-mRNA network suggested candidate circRNAs that sponge miR-17, miR-15b, miR-130b, the let-7 family, and miR125, together with their mRNA targets. The identified circRNA-miRNA-mRNA network provides an updated, coherent view of the mechanisms involved in anthracycline-induced cardiotoxicity.


Assuntos
MicroRNAs , Suínos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Doxorrubicina/toxicidade , Cardiotoxicidade/genética , Antibióticos Antineoplásicos/toxicidade , Sus scrofa/genética , Sus scrofa/metabolismo
2.
NPJ Vaccines ; 8(1): 145, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773184

RESUMO

Epstein-Barr virus (EBV) reactivation may be involved in long-COVID symptoms, but reactivation of other viruses as a factor has received less attention. Here we evaluated the reactivation of parvovirus-B19 and several members of the Herpesviridae family (DNA viruses) in patients with long-COVID syndrome. We hypothesized that monovalent COVID-19 vaccines inhibit viral interference between SARS-CoV-2 and several DNA viruses in patients with long-COVID syndrome, thereby reducing clinical symptoms. Clinical and laboratory data for 252 consecutive patients with PCR-verified past SARS-CoV-2 infection and long-COVID syndrome (155 vaccinated and 97 non-vaccinated) were recorded during April 2021-May 2022 (median 243 days post-COVID-19 infection). DNA virus-related IgG and IgM titers were compared between vaccinated and non-vaccinated long-COVID patients and with age- and sex-matched non-infected, unvaccinated (pan-negative for spike-antibody) controls. Vaccination with monovalent COVID-19 vaccines was associated with significantly less frequent fatigue and multiorgan symptoms (p < 0.001), significantly less cumulative DNA virus-related IgM positivity, significantly lower levels of plasma IgG subfractions 2 and 4, and significantly lower quantitative cytomegalovirus IgG and IgM and EBV IgM titers. These results indicate that anti-SARS-CoV-2 vaccination may interrupt viral cross-talk in patients with long-COVID syndrome (ClinicalTrials.gov Identifier: NCT05398952).

3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445825

RESUMO

Small extracellular vesicles (EVs) and their cargo are an important component of cell-to-cell communication in cardiac disease. Allogeneic adipose derived stem cells (ADSCs) are thought to be a potential approach for cardiac regenerative therapy in ischemic heart disease. The SCIENCE study investigated the effect of ADSCs administered via intramyocardial injection on cardiac function in patients with ischemic heart disease. The aim of this substudy, based on samples from 15 patients, was to explore small EV miRNA dynamics after treatment with ADSCs compared to a placebo. Small EVs were isolated at several timepoints after the percutaneous intramyocardial application of ADSCs. No significant effect of ADSC treatment on small EV concentration was detected. After 12 months, the expression of miR-126 decreased significantly in ADSC patients, but not in the placebo-treated group. However, all cardiac miRNAs correlated with plasma cardiac biomarkers. In line with the overall negative results of the SCIENCE study, with the exception of one miR, we did not detect any significant regulation of small EV miRNAs in this patient collective.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , MicroRNAs , Isquemia Miocárdica , Humanos , MicroRNAs/genética , Tecido Adiposo , Vesículas Extracelulares/genética , Células-Tronco , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108624

RESUMO

We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet®, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3). Sham interventions served as controls and healthy animals (Control, n = 3) served as a reference in sequencing study. Myocardial samples from the LV of each group were subjected to RNA sequencing. RNA-seq analysis revealed a clear distinction between the transcriptomes of myocardial fibrosis (MF) models. Cardiotoxic drugs activated the TNF-alpha and adrenergic signaling pathways. Pressure or volume overload led to the activation of FoxO pathway. Significant upregulation of pathway components enabled the identification of potential drug candidates used for the treatment of heart failure, such as ACE inhibitors, ARB, ß-blockers, statins and diuretics specific to the distinct MF models. We identified candidate drugs in the groups of channel blockers, thiostrepton that targets the FOXM1-regulated ACE conversion to ACE2, tyrosine kinases or peroxisome proliferator-activated receptor inhibitors. Our study identified different gene targets involved in the development of distinct preclinical MF protocols enabling tailoring expression signature-based approach for the treatment of MF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Transcriptoma , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/patologia , Cardiotoxicidade/patologia , Doxorrubicina/farmacologia , Fenótipo , Fibrose , Sistemas de Liberação de Medicamentos , Miocárdio/metabolismo , Modelos Animais de Doenças
5.
J Pers Med ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836514

RESUMO

(1) Background: Coronary artery stenting leads to local inflammation, disturbs vasomotion, and slows endothelialization, increasing vascular thrombus risk. We used a pig stenting coronary artery model to assess how peri-interventional triple therapy with dabigatran ameliorates these effects. (2) Methods: In a total of 28 pigs bare-metal stents were implanted. Four days before the percutaneous coronary intervention (PCI), we started 16 of the animals on dabigatran, maintained through 4 days after the procedure. As controls, the remaining 12 pigs received no therapy. In both groups, dual antiplatelet therapy (DAPT) (clopidogrel, 75 mg plus aspirin, 100 mg) was administered until animals were euthanized. Just after the PCI and on day 3 after the procedure, we performed optical coherence tomography (OCT) in eight animals in the dabigatran group and four controls and euthanized them. We followed the eight remaining animals in each group with OCT and angiography for one month before euthanizing them and performed in vitro myometry and histology on harvested coronary arteries from all animals. (3) Results: The dabigatran group showed a significantly increased vasoconstriction at 3 days after PCI (10.97 ± 3.85 mN vs. 7.32 ± 5.41 mN, p = 0.03), but we found no differences between endothelium-dependent and -independent vasodilatation. We also found no group differences in OCT, quantitative angiography, or histomorphometry findings. (4) Conclusions: Starting a short course of dabigatran just before PCI and continuing for a 3-day window along with usual post-PCI DAPT is associated with enhanced vasoconstriction after bare-metal stent implantation without reducing neointimal formation at one month.

6.
Front Bioeng Biotechnol ; 10: 767985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646882

RESUMO

Recent preclinical investigations and clinical trials with stem cells mostly studied bone-marrow-derived mononuclear cells (BM-MNCs), which so far failed to meet clinically significant functional study endpoints. BM-MNCs containing small proportions of stem cells provide little regenerative potential, while mesenchymal stem cells (MSCs) promise effective therapy via paracrine impact. Genetic engineering for rationally enhancing paracrine effects of implanted stem cells is an attractive option for further development of therapeutic cardiac repair strategies. Non-viral, efficient transfection methods promise improved clinical translation, longevity and a high level of gene delivery. Hypoxia-induced factor 1α is responsible for pro-angiogenic, anti-apoptotic and anti-remodeling mechanisms. Here we aimed to apply a cellular gene therapy model in chronic ischemic heart failure in pigs. A non-viral circular minicircle DNA vector (MiCi) was used for in vitro transfection of porcine MSCs (pMSC) with HIF1α (pMSC-MiCi-HIF-1α). pMSCs-MiCi-HIF-1α were injected endomyocardially into the border zone of an anterior myocardial infarction one month post-reperfused-infarct. Cell injection was guided via 3D-guided NOGA electro-magnetic catheter delivery system. pMSC-MiCi-HIF-1α delivery improved cardiac output and reduced myocardial scar size. Abundances of pro-angiogenic proteins were analyzed 12, 24 h and 1 month after the delivery of the regenerative substances. In a protein array, the significantly increased angiogenesis proteins were Activin A, Angiopoietin, Artemin, Endothelin-1, MCP-1; and remodeling factors ADAMTS1, FGFs, TGFb1, MMPs, and Serpins. In a qPCR analysis, increased levels of angiopeptin, CXCL12, HIF-1α and miR-132 were found 24 h after cell-based gene delivery, compared to those in untreated animals with infarction and in control animals. Expression of angiopeptin increased already 12 h after treatment, and miR-1 expression was reduced at that time point. In total, pMSC overexpressing HIF-1α showed beneficial effects for treatment of ischemic injury, mediated by stimulation of angiogenesis.

7.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502448

RESUMO

Cardioprotective medications are still unmet clinical needs. We have previously identified several cardioprotective microRNAs (termed ProtectomiRs), the mRNA targets of which may reveal new drug targets for cardioprotection. Here we aimed to identify key molecular targets of ProtectomiRs and confirm their association with cardioprotection in a translational pig model of acute myocardial infarction (AMI). By using a network theoretical approach, we identified 882 potential target genes of 18 previously identified protectomiRs. The Rictor gene was the most central and it was ranked first in the protectomiR-target mRNA molecular network with the highest node degree of 5. Therefore, Rictor and its targeting microRNAs were further validated in heart samples obtained from a translational pig model of AMI and cardioprotection induced by pre- or postconditioning. Three out of five Rictor-targeting pig homologue of rat ProtectomiRs showed significant upregulation in postconditioned but not in preconditioned pig hearts. Rictor was downregulated at the mRNA and protein level in ischemic postconditioning but not in ischemic preconditioning. This is the first demonstration that Rictor is the central molecular target of ProtectomiRs and that decreased Rictor expression may regulate ischemic postconditioning-, but not preconditioning-induced acute cardioprotection. We conclude that Rictor is a potential novel drug target for acute cardioprotection.


Assuntos
MicroRNAs/metabolismo , Terapia de Alvo Molecular , Infarto do Miocárdio/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Cardiotônicos , Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Ratos , Suínos
8.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573439

RESUMO

Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction.


Assuntos
Processamento Alternativo , Doenças Cardiovasculares/genética , Proteínas/genética , RNA Circular/genética , Animais , Humanos
9.
Front Cardiovasc Med ; 8: 690476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307502

RESUMO

Objective: We evaluated the short and long-term effect of peri-interventional dabigatran therapy on vasomotion, endothelialization, and neointimal formation in a porcine coronary artery stenting model. Background: Stenting of coronary arteries induces local inflammation, impairs vasomotion and delays endothelialization. Methods: Twenty-eight animals underwent percutaneous coronary intervention (PCI) with drug eluting stents. Sixteen pigs started dabigatran therapy 4 days prior to PCI and continued for 4 days post-stenting, while 12 animals served as controls. Post-stenting dual antiplatelet therapy (75 mg clopidogrel and 100 mg aspirin) was continued in both groups until termination. Immediately post-stenting and at day 3 optical coherence tomography (OCT) was performed in all animals, followed by euthanasia of 8 dabigatran and 4 control animals. The remaining pigs (8 of each group) were followed up for 1 month, with control angiography and OCT. Tissue burden (degree of peri-strut structure-thrombus and/or fibrin) was evaluated. After euthanasia coronary arteries were harvested for in-vitro myometry and histology. Results: Thrombin generation was lower (p < 0.001) and tissue burden (0.83 ± 0.98 vs. 3.0 ± 2.45; p = 0.031) was significantly decreased in dabigatran treated animals. After 3 days post-PCI endothelium-dependent vasodilation was significantly improved (77 ± 40% vs. 41 ± 31%, p = 0.02) in dabigatran animals. Neither quantitative angiography nor histomorphometry showed differences between the groups. Endothelialization was faster in the dabigatran group as compared with controls (p = 0.045). Conclusion: Short-term peri-interventional triple therapy with dabigatran, aspirin, and clopidogrel led to an enhanced endothelium dependent vasodilation and faster endothelialization. However, neointimal formation 1-month after stent implantation was comparable between groups.

10.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573240

RESUMO

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


Assuntos
Redes Reguladoras de Genes , Mioblastos Cardíacos/patologia , Infarto do Miocárdio/complicações , Traumatismo por Reperfusão Miocárdica/genética , RNA Circular/metabolismo , Animais , Hipóxia Celular/genética , Biologia Computacional , Angiografia Coronária , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Mioblastos Cardíacos/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , RNA-Seq , Sus scrofa , Regulação para Cima
11.
Eur Heart J ; 42(2): 192-201, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33089304

RESUMO

AIMS: Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI. METHODS AND RESULTS: In a chronic model of post-MI HF, slow-growing pigs underwent 90 min left anterior descending artery occlusion followed by reperfusion. Animals were randomized and treatment started 1-month post-MI. Monthly intravenous (IV) treatments of CDR132L over 3 or 5 months (3× or 5×) were applied in a blinded randomized placebo-controlled fashion. Efficacy was evaluated based on serial magnetic resonance imaging, haemodynamic, and biomarker analyses. The treatment regime provided sufficient tissue exposure and CDR132L was well tolerated. Overall, CDR132L treatment significantly improved cardiac function and reversed cardiac remodelling. In addition to the systolic recovery, diastolic function was also ameliorated in this chronic model of HF. CONCLUSION: Monthly repeated dosing of CDR132L is safe and adequate to provide clinically relevant exposure and therapeutic efficacy in a model of chronic post-MI HF. CDR132L thus should be explored as treatment for the broad area of chronic heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Diástole , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Suínos , Remodelação Ventricular
12.
JACC Basic Transl Sci ; 5(7): 715-726, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760858

RESUMO

Based on the investigation of neprilysin (NEP) regulation in a translational porcine model of chronic heart failure (HF), this study concluded: 1) that kidneys might play a crucial part in systemic NEP regulation based on 20 to 100 higher NEP content and/or activity compared with any other organ; 2) NEP seems to be downregulated under HF conditions; and 3) that the value of plasma NEP concentrations and activity as biomarkers is questionable. For the first time, these data provide basic knowledge on HF-related pathophysiological alterations of the NEP system and contribute to understanding the mechanism of action of angiotensin-receptor neprilysin-inhibitors, which remains elusive despite broad clinical applications.

13.
Biomolecules ; 10(8)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823854

RESUMO

Anti-fibrotic therapies are of increasing interest to combat cardiac remodeling and heart failure progression. Recently, anti-fibrotic circular RNAs (circRNAs) have been identified in human and rodent cardiac tissue. In vivo (rodent) experiments proved cardiac anti-fibrotic effects of the natural compounds bufalin and lycorine by downregulating miRNA-671-5p, associated with a theoretic increase in the tissue level of circRNA CDR1as. Accordingly, we hypothesized that both anti-fibrotic drugs may inhibit focal myocardial fibrosis of the remodeled left ventricle (LV) also in a translational large animal model of heart failure (HF). Domestic pigs were repeatedly treated with subcutaneous injections of either bufalin, lycorine, or saline, (n = 5/group) between days 7-21 post acute myocardial infarction (AMI). At the 2-month follow-up, both bufalin and lycorine led to significantly reduced cardiac fibrosis. Bufalin treatment additionally led to smaller end-diastolic volumes, higher LV ejection fraction (EF), and increased expression of CDR1as of the AMI region. Elevated tissue levels of the circRNA CDR1as in the AMI region of the pig heart correlated significantly with LV and right ventricular EF, LV stroke volume, and negatively with infarct size. In conclusion, we successfully identified the circRNA CDR1as in pig hearts and show a significant association with improved LV and RV function by anti-fibrotic therapies in a translational animal model of HF.


Assuntos
Alcaloides de Amaryllidaceae/administração & dosagem , Bufanolídeos/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Fenantridinas/administração & dosagem , RNA Circular/genética , RNA Longo não Codificante/economia , Remodelação Ventricular/efeitos dos fármacos , Alcaloides de Amaryllidaceae/farmacologia , Animais , Bufanolídeos/farmacologia , Modelos Animais de Doenças , Humanos , Injeções Subcutâneas , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Fenantridinas/farmacologia , Volume Sistólico/efeitos dos fármacos , Suínos , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
14.
Mol Ther Methods Clin Dev ; 18: 354-366, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32671138

RESUMO

Cardiosphere-derived cells (CDCs) are progenitor cells derived from heart tissue and have shown promising results in preclinical models. APOSEC, the secretome of irradiated peripheral blood mononuclear cells, has decreased infarct size in acute and chronic experimental myocardial infarction (MI). We enhanced the effect of CDCs with APOSEC preconditioning (apoCDC) and investigated the reparative effect in a translational pig model of reperfused MI. Supernatants of CDCs, assessed by proteomic analysis, revealed reduced production of extracellular matrix proteins after in vitro APOSEC preconditioning. In a porcine model of catheter-based reperfused anterior acute MI (AMI), CDCs with (apoCDC, n = 8) or without APOSEC preconditioning (CDC, n = 6) were infused intracoronary, 15 min after the start of reperfusion. Untreated AMI animals (n = 7) and sham procedures (n = 5) functioned as controls. 2-deoxy-2-(18 F)-fluoro-D-glucose-positron emission tomography-magnetic resonance imaging ([18F]FDG-PET-MRI), with late enhancement after 1 month, showed reduced scar volume and lower transmurality of the infarcted area in CDC and apoCDC compared to AMI controls. Segmental quantitative PET images displayed indicated more residual viability in apoCDC. The left-ventricle (LV) ejection fraction was improved nonsignificantly to 45.8% ± 8.6% for apoCDC and 43.5% ± 7.1% for CDCs compared to 38.5% ± 4.4% for untreated AMI. Quantitative hybrid [18F]FDG-PET-MRI demonstrated improved metabolic and functional recovery after CDC administration, whereas apoCDCs induced preservation of viability of the infarcted area.

15.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605184

RESUMO

Clusterin exerts anti-inflammatory, cytoprotective and anti-apoptotic effects. Both an increase and decrease of clusterin in acute myocardial infarction (AMI) has been reported. We aimed to clarify the role of clusterin as a systemic biomarker in AMI. AMI was induced by percutaneous left anterior artery (LAD) occlusion for 90 min followed by reperfusion in 24 pigs. Contrast ventriculography was performed after reperfusion to assess left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume (LVESV) and additional cMRI + late enhancement to measure infarct size and LV functions at day 3 and week 6 post-MI. Blood samples were collected at prespecified timepoints. Plasma clusterin and other biomarkers (cTnT, NT-proBNP, neprilysin, NGAL, ET-1, osteopontin, miR21, miR29) were measured by ELISA and qPCR. Gene expression profiles of infarcted and remote region 3 h (n = 5) and 3 days (n = 5) after AMI onset were analysed by RNA-sequencing. AMI led to an increase in LVEDV and LVESV during 6-week, with concomitant elevation of NT-proBNP 3-weeks after AMI. Plasma clusterin levels were increased immediately after AMI and returned to normal levels until 3-weeks. Plasma NGAL, ET-1 and miR29 was significantly elevated at 3 weeks follow-up, miR21 increased after reperfusion and at 3 weeks post-AMI, while circulating neprilysin levels did not change. Elevated plasma clusterin levels 120 min after AMI onset suggest that clusterin might be an additional early biomarker of myocardial ischemia.


Assuntos
Clusterina/sangue , Modelos Animais de Doenças , Infarto do Miocárdio/patologia , Isquemia Miocárdica/patologia , Animais , Feminino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/terapia , Isquemia Miocárdica/sangue , Isquemia Miocárdica/terapia , Reperfusão , Volume Sistólico , Suínos , Transcriptoma , Remodelação Ventricular
16.
Biomolecules ; 10(6)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549327

RESUMO

In our prospective non-randomized, single-center cohort study (n = 161), we have evaluated a multimarker approach including S100 calcium binding protein A12 (S100A1), interleukin 1 like-receptor-4 (IL1R4), adrenomedullin, copeptin, neutrophil gelatinase-associated lipocalin (NGAL), soluble urokinase plasminogen activator receptor (suPAR), and ischemia modified albumin (IMA) in prediction of subsequent cardiac adverse events (AE) during 1-year follow-up in patients with coronary artery disease. The primary endpoint was to assess the combined discriminatory predictive value of the selected 7 biomarkers in prediction of AE (myocardial infarction, coronary revascularization, death, stroke, and hospitalization) by canonical discriminant function analysis. The main secondary endpoints were the levels of the 7 biomarkers in the groups with/without AE; comparison of the calculated discriminant score of the biomarkers with traditional logistic regression and C-statistics. The canonical correlation coefficient was 0.642, with a Wilk's lambda value of 0.78 and p < 0.001. By using the calculated discriminant equation with the weighted mean discriminant score (centroid), the sensitivity and specificity of our model were 79.4% and 74.3% in prediction of AE. These values were higher than that of the calculated C-statistics if traditional risk factors with/without biomarkers were used for AE prediction. In conclusion, canonical discriminant analysis of the multimarker approach is able to define the risk threshold at the individual patient level for personalized medicine.


Assuntos
Biomarcadores , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Estudos de Coortes , Comorbidade , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/terapia , Morte , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Intervenção Coronária Percutânea , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia
17.
Nat Commun ; 11(1): 633, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005803

RESUMO

Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Humanos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Suínos
18.
Cardiovasc Res ; 116(5): 970-982, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31346605

RESUMO

AIMS: The clinical application of doxorubicin (DOX) is severely compromised by its cardiotoxic effects, which limit the therapeutic index and the cumulative dose. Liposomal encapsulation of DOX (Myocet®) provides a certain protective effect against cardiotoxicity by reducing myocardial drug accumulation. We aimed to evaluate transcriptomic responses to anthracyclines with different cardiotoxicity profiles in a translational large animal model for identifying potential alleviation strategies. METHODS AND RESULTS: We treated domestic pigs with either DOX, epirubicin (EPI), or liposomal DOX and compared the cardiac, laboratory, and haemodynamic effects with saline-treated animals. Cardiotoxicity was encountered in all groups, reflected by an increase of plasma markers N-terminal pro-brain-natriuretic peptide and Troponin I and an impact on body weight. High morbidity of EPI-treated animals impeded further evaluation. Cardiac magnetic resonance imaging with gadolinium late enhancement and transthoracic echocardiography showed stronger reduction of the left and right ventricular systolic function and stronger myocardial fibrosis in DOX-treated animals than in those treated with the liposomal formulation. Gene expression profiles of the left and right ventricles were analysed by RNA-sequencing and validated by qPCR. Interferon-stimulated genes (ISGs), linked to DNA damage repair and cell survival, were downregulated by DOX, but upregulated by liposomal DOX in both the left and right ventricle. The expression of cardioprotective translocator protein (TSPO) was inhibited by DOX, but not its liposomal formulation. Cardiac fibrosis with activation of collagen was found in all treatment groups. CONCLUSIONS: All anthracycline-derivatives resulted in transcriptional activation of collagen synthesis and processing. Liposomal packaging of DOX-induced ISGs in association with lower cardiotoxicity, which is of high clinical importance in anticancer treatment. Our study identified potential mechanisms for rational development of strategies to mitigate anthracycline-induced cardiomyopathy.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/prevenção & controle , Dano ao DNA , Doxorrubicina/análogos & derivados , Fatores Reguladores de Interferon/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacocinética , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Cardiotoxicidade , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Composição de Medicamentos , Epirubicina/toxicidade , Feminino , Fibrose , Humanos , Fatores Reguladores de Interferon/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Sus scrofa , Transcriptoma/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
19.
Histol Histopathol ; 35(7): 653-663, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31646547

RESUMO

The incidence of in-stent restenosis (ISR) has declined dramatically, but once it develops, no current treatment option, such as drug-eluting stents, drug-coated balloons, or cutting balloons (CBs), prevents re-narrowing of the stented atherosclerotic artery. In this preclinical study, we aimed to improve the efficacy of ISR treatment by coating CBs with paclitaxel (paclitaxel-eluting cutting balloon; PECB) and to characterize the histological features of neo-ISRs that arise after ISR treatment. ISR was induced by bare metal stent (BMS) implantation in coronary arteries in pigs. After one month of follow-up, the BMS-induced ISR was treated with either CB or PECB. After another month, we performed quantitative coronary angiography, explanted the treated arteries and assessed histopathological and histomorphometric parameters. In addition, we compared the histological features of neo-ISRs with pre-treatment ISRs. Injury, inflammation, fibrin deposition, and endothelialization scores were similar between the CB and PECB groups at one month after ISR treatment. Neointimal area (0.87±0.61 vs. 1.95±1.14 mm², p=0.02), mean neointimal thickness (0.40±0.39 vs. 0.99±0.56 mm, p=0.01), and percent area stenosis (27.3±20.4 vs. 48.3±22.9%, p=0.04) were decreased in PECB-treated coronary arteries compared to CB-treated arteries, respectively. Density of cells (predominantly smooth muscle cells; SMCs) was increased in neo-ISRs (3.51±3.05×10³ vs. 6.35±2.57×10³ cells/mm², p<0.01), but significantly more CD68⁺ and CD20⁺ cells were found in the pre-treatment ISRs. In conclusion, PECB treatment of ISRs led to better results in terms of smaller neointimal area and %area stenosis of the neo-ISR. SMC density was increased in neo-ISRs in contrast with higher percentage of CD68⁺ and CD20⁺ cells in pre-treatment ISRs.


Assuntos
Angioplastia Coronária com Balão/instrumentação , Doença da Artéria Coronariana/patologia , Reestenose Coronária/prevenção & controle , Stents Farmacológicos , Paclitaxel/farmacologia , Animais , Sus scrofa
20.
Cells ; 8(11)2019 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717562

RESUMO

Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.


Assuntos
Biomarcadores , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Suscetibilidade a Doenças , Mioblastos Cardíacos/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Antígenos de Superfície/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Reprogramação Celular/genética , Conexina 43/genética , Conexina 43/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Fator de Transcrição GATA4/genética , Predisposição Genética para Doença , Imunofenotipagem , Fatores de Transcrição MEF2/genética , MicroRNAs/genética , Fenótipo , Suínos , Remodelação Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA